همریختی های فشرده روی جبرهای لیپ شیتس از توابع مشتق پذیر

thesis
abstract

این پایان نامه که شامل ‎4‎ فصل می باشد به بررسی همریختی های فشرده بین این نوع جبرهای لیپ شیتس می پردازیم. برای این منظور ابتدا جبرهای لیپ شیتس را معرفی می کنیم و شرایطی را که این جبرها، کامل و همچنین طبیعی باشند، بیان می نماییم. سپس به بررسی همریختی ها روی جبرهای لیپ شیتس پرداخته و شرایط لازم و کافی را برای این که همریختی ها فشرده باشند، بیان می نماییم در فصل اول، مفاهیم مقدماتی موردنیاز را یادآوری می کنیم. فصل دوم شامل سه بخش می باشد: در بخش اول، عملگرهای فشرده روی فضاهای باناخ را معرفی و برخی قضیه های مربوط به آن را بیان می کنیم. در بخش دوم، ابتدا همریختی ها روی جبرهای تابعی را معرفی می نماییم، سپس قضیه مشخص سازی همریختی های فشرده روی جبرهای تابعی را بیان و اثبات می نماییم. هرگاه‎a‎ و ‎b جبر تابعی باناخ با فضای ایده آل ماکسیمالm (a) و m (b) باشند، همریختی t:a? bرا القا شده توسط نگاشت?:m (b) ? m (a) گوییم هرگاهtf = f ^? ? برای هر .f ?a‎در حالتی که‎a و ‎b ‎جبرهای تابعی باناخ طبیعی باشند، همریختی القا شده ‎t:a? b‎در رابطه بالا به صورت tf = f ? ? برای هر f ?aمی باشد که در آن m(a)‎ فضای ایده آل ماکسیمال‎a است. چنان چه a=b نگاشت‎ t درونریختی القا شده توسط ? نامیده می شود. در بخش سوم، جبر نرم دار‎ d1(x)را روی مجموعه فشرده و کامل x معرفی نموده و برای یک جبر تابعی طبیعی‎ bزیرمجموعه d1(x) است وطیف درونریختی های فشرده t:b ? b ‎را بررسی می کنیم. فصل سوم شامل سه بخش می باشد: در بخش اول، ابتدا‎ x را یک مجموعه فشرده و کامل در صفحه مختلط در نظر می گیریم، سپس به معرفی جبر تابعی‎dn(x) متشکل از همه توابع مختلط مقدار روی‎ x که دارای مشتق مرتبه ‎n‎ام پیوسته روی‎x است، می پردازیم و شرایطی را بیان می کنیم کهdn(x) تحت نرمش کامل است. سپس برای یک دنباله جبری m=(mn)جبر d(x,m) متشکل از توابع بی نهایت بار مشتق پذیر را تعریف می کنیم. در بخش دوم، ابتدا جبرهای لیپ شیتس از توابع مشتق پذیر lip(x,m,?) را روی مجموعه فشرده و کاملx تعریف کرده سپس به ارائه برخی زیرجبرهای آن پرداخته، شرایط کامل بودن و طبیعی بودن این نوع جبرهای لیپ شیتس را بیان می نماییم. در بخش سوم، شرایط کافی را برای این که نگاشت?:x?y یک همریختی‎t‎: ‎lip(y,m,?) ? lip(x,m,?) القا کند، بیان می کنیم. فصل چهارم شامل چهار بخش می باشد: در بخش اول، شرط کافی برای این که نگاشت ? :x ?y یک درونریختی فشرده مانند t‎: ‎lip(x,m,?)? lip(x,m,?) ‎ را وقتی‎ x=[0,1] القا کند، بیان می کنیم. در بخش دوم، درحالتی که ‎ xیک مجموعه کلی باشد، شرط کافی برای این که‎? : x ? x یک درونریختی فشرده مانند ‎t‎: ‎lip(x,m,?)? lip(x,m,?) ‎ را القا کند، بیان می کنیم.در بخش سوم، عکس مسأله را در حالتی که‎ x گوی واحد بسته یا دایره واحد باشد، بررسی می کنیم. یعنی بررسی می کنیم اگرm=(mn) یک دنباله غیرتحلیلی،‎ 0< ? <1 و درونریختی فشرده ‎t: lip( x,m,?)? lip(x,m?) توسط خودنگاشت ?‎: ‎x ?x القا شده باشد، آنگاه ‎|?(z)|<1 هرگاه حداقل یکی از شرایط مورد نظر را داشته باشد. در بخش چهارم، وقتی که‎xیک مجموعه منظم یکنواخت و جبرهای لیپ شیتس طبیعی باشند، به بررسی طیف درونریختی های فشرده روی جبرهای لیپ شیتس می پردازیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

عملگرهای فشرده، شبه فشرده و ریس روی جبرهای لیپ شیتس

این رساله در زمینه برخی عملگرهای خطی خاص بر جبرهای لیپ شیتس تدوین شده است. در فصل اول برخی از مطالب اساسی مورد نیاز در فصل های بعد ارائه خواهد شد. هم چنین نمادهای استاندارد مورد استفاده در این رساله معرفی می شوند. فصل دوم به بررسی عملگرهای ترکیبی روی جبرهای لیپ شیتس اختصاص دارد. در واقع موضوع مورد بحث در این فصل بررسی تاثیر خواص نگاشت ? بر ویژگی های عملگر ترکیبی القاشده توسط ? و عکس آن است. نتا...

درون ریختی های فشرده روی بعضی از جبرهای لیپشیتس توابع مشتق پذیر

فرض کنیم a(x) جبر یکنواخت متشکل از کلیه توابع مختلط مقدار پیوسته بر مجموعه فشرده x باشد که بر intx تحلیلی اند. برای هر 1 جبر لیپشیتس از مرتبه a را که با lip(x,a) نمایش داده می شود به صورت زیر تعریف می کنیم: حال تعریف می کنیم lipa(x,a)=lip(x,a) n a(x) و برای هر x تام و فشرده lipn(x,a) را جبر تمام توابع مختلط مقدار بر x می گیریم که مشتقات آنها تا مرتبه n ام بر x موجود و در (x,a)lip قرار دارند. ج...

15 صفحه اول

همریختی های فشرده و فشرده ضعیف روی جبرهای باناخ منظم

در این پایان نامه به معرفی دو خاصیت bsp و absp میپردازیم و نشان می دهیم جبرهایی مانندl1(g) ,c0(g) دارای خاصیت bsp می باشند. همچنین نشان می دهیم هر همریختی فشرده از یک جبر باناخ منظم قوی که دارای خاصیت bsp باشد به یک جبر باناخ دیگر دارای بردی با بعد متناهی می باشد. در نهایت نشان می دهیم هر جبر باناخ منظم آرنز ، wsc که یک همانی تقریبی کراندار داشته باشد یکدار است. به عنوان اصلی ترین قضایای ای...

15 صفحه اول

درونریختی های فشرده یکانی جبرهای لیپشیتس توابع بینهایت بار مشتق پذیر

در این پایان نامه با فرض این که (x,d)یک فضای متری فشرده باشد، به معرفی و بیان برخی از ویژگی های جبرهای لیپشیتس lip(x, ?) برای 0<??1 و جبرهای کوچک لیپشیتس lip(x, ?) برای 0<?<1 پرداخته و همین طور برای دنباله ی وزنی {m_n } ?(?@n=0) m=به معرفی جبرهای لیپشیتس توابع بینهایت بار مشتق پذیر lip(x, m, ?) برای 0<??1 و lip(x, m, ?) برای 0<?<1 می پردازیم. در ادامه درونریختی ها و درونریختی های فشرده ی جبرهای...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023